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A method for the numerical evaluation of trigonometric Fourier coefficients is described. 
This method is suitable for sutliciently smooth functions and is essentially a modification of 
the standard method based on trapezoidal rule sums using, optionally, the fast Fourier 
transform. 

INTRODUCTION 

In this paper we provide a description and justification of a method for the 
numerical evaluation of sets of Fourier coefficients 

cos 2xr(x - A) 
g--Jo sin ( B-A ) dx, r=o, I,2 ,..., 

in terms of equally spaced sets of function values 

.I-(-4 +.@ - A)/m), j=O,1,2 m. ,.-., 

The method is restricted to functionsf(x) which are suffkiently smooth in an interval 
containing the fundamental interval [A, B], that is, 

f(x) E C(P) [A, B]. 

The method is a modification of the standard approach and also employs trapezoidal 
rule sums and optionally the fast Fourier transform to calculate these. In many cases, 
the use of this modification results in a significant reduction in the number (m + 1) of 
function values required to attain comparable accuracy. 

Most of the material in this paper has been presented before. However, here the 
author concentrates on the underlying ideas and, particularly, on relating these to 
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practical techniques for gauging the accuracy of the numerical approximations and 
the cost in terms of function values of attaining a specified accuracy. To simplify the 
presentation, we have treated the fundamental interval [0, 11, that is, we set 

A =O. B= 1. 

Results for general A and B can be obtained by linear scaling. 
In Section 1, various simple classical formulas associated with the calculation of 

Fourier coefficients using the trapezoidal rule are presented, and the use of the fast 
Fourier transform together with accuracy estimation is set into this context. The 
material in Section 1 does not require that f(x) be continuous. In Section 2, the scope 
is reduced to suffkiently smooth functions, the Fourier coefficient asymptotic 
expansion is introduced, and this is used to estimate the cost of using the FFT in 
terms of the required accuracy. The theory is developed in Section 3, which 
introduces Bernouilli functions and the Euler expansion. This is sufficient to define 
and justify the proposed modification, which is described in detail in Section 4. 

1. DEFINITIONS AND CLASSICAL BACKGROUND 

Given a function f(x), it is almost always possible to construct a convergent 
Fourier series of the form 

f(x) =If+ 2 2 
m 

Pf cos 2nrx + 2 C P’f sin 2m-x. 
r=1 r=1 

(1-l) 

The coefficients in these series are termed Fourier coeflcients, and may be defined by 

C’O’f= If= ‘f(x) dx, 
I 0 

P)f= (d f(x) cos 2nrx dx, 

P)f= IIf sin 2arx dx. 

(1.2) 

The standard definition of Fourier coefficients coincides with 2C”‘f and 2S”‘f when 
r 2 1 and with C’O’fwhen r = 0, but we use the term Fourier coeffkient loosely here. 
The purpose of this paper is to describe a family of methods for calculating sets of 
Fourier coefficients numerically. That is, to obtain approximations to C”‘fand Scry 
based only on function valuesf(x,). 
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The function T(x) is clearly periodic. It can be shown that when fE C[O, 11, and 
satisfies a limited fluctuation condition, then 

T(x) =f((x) for all x E (0, l), 

7(x + 1) =f(x) for all x, (l-3) 

m =m = Hf(O) +ft1>). 

One method for approximating integrals (1.2) is to employ the m-panel end point 
trapezoidal rule, defined by 

When this quadrature rule is used to approximate the integrals in (1.2) we obtain 
approximations, sometimes called finite Fourier transforms; we denote these by 

aFm,‘lf= Rim”‘(f(x) cos 2xrx), 

bz”‘*“f= Rimlm.‘l(f (x) sin 2nrx). 
(1.5) 

It is convenient to treat in detail only the case in which m is even. The theory is 
similar when m is odd. 

The evaluation of the set of trapezoidal rule sums almv’lf, bl”‘*“f, r = 0, I,..., m/2, 
from the function values f (j/m), j = 0, l,..., m, can be accomplished efficiently using 
a fast Fourier transform (FFT) routine. For this reason, the method is often referred 
to as the FFT method. However, the reader should bear in mind that use of the FFT 
is not necessary for the implementation. 

Having decided on this very straightforward set of formulas, one of our first 
theoretical tasks must be to attempt to glean information about how accurate these 
approximations to the true Fourier coefficients C(‘)f and S@)f are. At the very least, 
such information may be helpful in choosing an appropriate value of m. We may 
substitute into (1.5) the Fourier series J’(x) for f(x), and so obtain expressions for 
ak”*‘lf and bLmv’y which contain only Fourier coefficients. The ensuing calculation is 
straightforward. As a preliminary it is helpful to establish 

Rim*‘l(cos 2nrx) = 1 when r/m is an integer, 

=o otherwise, 

Rim,‘l(sin 27rrx) = 0 for all r. 

Then we find, without difficulty, that 

(l-6) 

/=-a0 

bpL’lf= f pl+ry 

1=-a, 

(1.7) 
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When (r( < m, these may be written in the form 

These formulas are sometimes known as aliasing formulas. Setting r = 0 in the first 
of these gives a version of the classical Poisson summation formula, namely, 

(1.9) 

(The classical formula relates an infinitely extended trapezoidal sum to Fourier 
transforms and could be derived from this formula. This formula can be obtained 
from the classical formula by definingf(x) to be zero outside the integration interval. 
An alternative derivation of the aliasing formulas can be obtained by replacingf(x) 
by f(x) cos 27~x in (1.9).) 

The aliasing formulas (1.7) provide a theoretical expression for the difference 
between the calculated approximations, such as, a, t”‘,‘lf and the corresponding exact 
quantities C(I)J Like many theoretical expressions for the discretation error, these 
involve quantities (higher order Fourier coefficients) whose numerical values are 
unknown. Nevertheless, we can proceed to make some heuristic deductions. These are 
based on the circumstance that 

the Fourier series is known to converge. (1.10) 

This means that the magnitude of C”‘fapproaches zero with increasing r. As a basis 
for our heuristic discussion, let us think in terms of the sequence of Fourier coef- 
ficients being a steadily decreasing sequence and the approximation error 
la f”‘,‘lf- Ccryj being approximated by the term in (1.8) which is of lowest order. 
When r < m/2, this term is C (m-r)f, which we might expect to be smaller than C”)f 
the expression whose value we are seeking. When r > m/2, the error term C(m-r)f is 
probably greater than C’*‘fand so the approximation ai”*‘]f is useless. So one is led 
quite naturally to the heuristic result that at”*‘lf is only likely to be a meaningful 
approximation to Ccr)f when r < m/2. In addition, the same assumption implies that 
the approximation error deteriorates as r is increased from r = 0 to r = m/2. 

When r = m/2, a somewhat anomalous situation occurs. Equation (1.8) reduces to 

akT;“f= 2p@‘f+ 2~(3m9-+ 2@m/z’f+ . . . , (1.11) 

so while a$;‘lf is a ridiculous approximation to C ‘m’2’fit is, in fact, an exceptionally 
good approximation to 2C’“‘2’J 

Heuristic arguments along the lines given lead one to the conclusion that the 
efficiency of the trapezoidal rule in approximating Fourier coefficients depends on 
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how rapidly the sequence of Fourier coefficients approaches zero. Our 
straightforward approach, based on the m-panel trapezoidal rule, using (m + 1) 
function values f(j/,), j = 0, I,..., m, will yield meaningful approximations to @‘A 
r = 0, I,..., m/2, and Str)J r = 1, 2 ,..., (m/2) - 1. The accuracy of each approximation 
will be of magnitude about Ctrner) f or Scmer)f, respectively, except for the approx- 
imation to C’“‘*‘f which is much more accurate. 

It is important to differentiate in one’s mind between rigorously established results 
(such as all the numbered equations) and heuristic but plausible consequences, such 
as the foregoing remarks about which approximations should be treated as 
meaningful and which should be disregarded. It is possible by means of contrived 
examples to make the discussion following statement (1.10) above seem ridiculous. It 
should not be possible to provide an example which contradicts any of the equations. 
The rest of this paper will describe an approach to the problem involving 
modifications which exploit these circumstances when f(x) is sufficiently continuous. 
Before going on to this, we make some comments. 

First, it follows immediately either from the definition (1.5) or from (1.7) that both 
u~“‘~‘~ and bE”‘,‘lf are periodic in Y. Specifically, 

(1.12) 

As r becomes large then a, t”*“fdoes not approach zero but oscillates while C”‘fdoes 
approach zero. The heuristic discussion merely indicates how large to allow r to 
become before abandoning the approximation. 

Second, we may look at the set of finite Fourier transforms, disregard those which 
give meaningless approximations, and form an approximation to J’(x) by replacing 
Ccr)f and Scr)f by their finite Fourier transforms. This gives a trigonometric 
polynomial 

m/2-1 

T(x) = ab”*“f+ 2 2 almvllfcos 27~x + a$;‘lfcos 2nmx/2 
j=l 

m/2-1 

+ 2 c blm*‘lfsin 2nrx. 
j=l 

(1.13) 

A trigonometric polynomial t(x) of joint degree (d,, d,) is one for which 

C”‘r=O 7 r> d * C) S”‘t=O 7 r > d S’ (1.14) 

The following results about T(x) are readily established: 

(i) if?(x) is any trigonometric polynomial of joint trigonometric degree (m/2, 
(m/2) - 1) then 

T(x) =.?<x> for all x; (1.15) 
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(ii) for any functionf(x), 

W/m) =fUh> all integers j. (1.16) 

We refer to T(x) defined in (1.13) as the interpolating trigonometric polynomial of 
f(x) of joint degree (m/2, (m/2) - 1). 

Consequently the finite Fourier transforms al”,‘lf, b~“*‘~ r < m/2, have two 
distinct definitions. First, they are the trapezoidal rule approximations to the exact 
Fourier coefficients C?)J and scr)J Second, they are the Fourier coefficients C”‘T, 
S”‘T of a precisely specified interpolating trigonometric polynomial T(x) which 
interpolates T(x). 

This interpretation of these coefficients allows us to provide a numerical but 
heuristic a posteriori bound to the error in cases where a subroutine for f(x) is 
available. Since al”*‘lf is the exact Fourier coefficient of T(x) we have 

aLm*‘lf= 1’ T(x) cos 2zrx dx, r < m/2, (1.17) 

and so 

1 a~mT’lf- C(‘lfl = 1’ (T(x) -f(x)) cos hrx dx 1 
0 

< o~;2”l I T(x) -f(x>l = ~,a,- (1.18) 

Now T(x) -f( x is zero at the evaluation points x = j/m and is, in general, 1 
oscillatory. Using the subroutine for f(x) and (1.13) for T(x), one can obtain 
estimates of smax by evaluating T(x) -f(x) at a few points between evaluation points. 
One might choose amongst others x = 1/2m and x = 1 - 1/2m. In practice, .smax is 
usually an unduly pessimistic bound on the error. However, this procedure provides 
an underestimate of E,,, and so is heuristic. In general, this method is very reliable 
(but not completely reliable). 

As a final word of caution, the reader should note that the joint trigonometric 
degree of the trapezoidal quadrature rule RrmV1l is (m - 1, co). That is, this rule 
integrates exactly the functions cos 2njx for all 0 <j < m - 1, and sin 2njx for all j. 
This should be distinguished from the joint trigonometric degree of the interpolation 
polynomial (m/2, (m/2) - 1) from which the rule can be derived. 

2. THE FOURIER COEFFICIENT ASYMPTOTIC EXPANSION 

The formulas given in Section 1 are valid for a very wide class of functionsf(x). A 
list of sufficient conditions is given in Whittaker and Watson [3, p. 1641. Roughly 
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speaking, these formulas are valid for any function for which the quantities involved 
can be defined. At discontinuities inf(x),f(x) is defined by either 

J’(x) = f lpl(f(x + E) +f(x - E)) (2.1) 

or 

J(O) = f p$m +A1 - E)), 

if these exist, or f(x) diverges at points where j(x) has an infinite singularity. To 
proceed further, we impose onf(x) the restrictions mentioned in the introduction. We 
restrict ourselves to sufliciently smooth functions. For some nonnegative values of p, 

f(x) E c’p’[o, 1 I, (2.2) 

that is, f(x) and its early derivatives are continuous in the integration interval [0, I]. 
In general, f(x) is continuous in a much larger interval which contains the interval 
[0, l] and is usually continuous for all real x. It is important to note that this does 
not imply that f(x) is continuous in the larger interval. Since f(x + 1) =f(x), J’(x) 
consists of an infinite sequence of similar segments of unit length and coincides with 
f(x) only in the open interval (0, 1). In general, this means that s(x) has a discon- 
tinuity at every integer value of x. 

However, there is a class of functions for which f(x) coincides with f(x) 
everywhere and both are analytic for all real x. These include the trigonometric 
functions such as cos 27rrx and many others. An example we shall use latter is 

fx(x) = (1 - P’>/( 1 - 2p cos 27rx + p’), IPI ( 1. (2.3) 

We shall refer to such functionsf(x) simply as periodic functions. (In fact, we should 
refer to them as periodic C” functions of period B -A.) 

The circumstance that f(x) is sufficiently smooth allows us to make use of the 
Fourier coefficient asymptotic expansion (FCAE) given in (2.4). In this section we 
shall first use it to provide estimates of the asymptotic behavior of Fourier coef- 
ficients for large r. Then we shall draw attention to some of its drawbacks as a 
calculation device in its own right. Then in Section 3 we shall employ it as a basis to 
derive further formulas which are useful computationally. 

Straightforward integration by parts of definition (1.2) gives the Fourier coeflcient 
asymptotic expansion, 

p)f= f’(l) -f’(O) -f’“‘(l) -f’“‘P> + . . . 
(27rr)’ (27rr)4 

+ (-1)“-2 f”“-“(l> -f (2n-3’P) 
(27rr)‘“-* 

+ (-1)“-’ 
1 

’ 
(2rtr)*” D 

f”“‘(t)( 1 - cos 2wt) dt, 

(2.4a) 



64 J.N.LYNESS 

pf= _ f(l) -f(O) +f’Yl) -f”‘(O) + . . , 
27cr (2nr)’ 

+ (-1)” 
f (2n-2Yl) -f (2n-2YO) + (-1)” 

(2X@” - ’ 
If (2n)(t) sin 27Crt dt 

QGj=O i 

(2.4b) 

We use this first to estimate the asymptotic behavior of Fourier coeffkients. We see 
immediately 

LEMMA 2.5. 

When f ‘(0) #f ‘(0), Pf= O(re2) as r+ co, 

when f(l) +f (O), Scr)f= O(r-‘) as r--t co. 

An example of a function with this behavior is 

fi(x) = emx/(e” - 1); pfl = a pf, = 2nr 
a2 + 4Z2r2 ’ a2 + 4n2r2 ’ (2.5) 

However, there are functions for which f (1) = f (0) and f ‘( 1) = f ‘(0). 

LEMMA 2.6. Whenf’q’(l)=f’q’(0), q=O, 1,2 ,..., p-2, then 

Pf= O(FpE), S@tf= O(rPpO) as r-+ 00, 

where pE and p, are the smallest even and odd integers, respectively, which exceed 
p- 1. 

Functions of this type include any of the form f (x) = xpP ‘( 1 - x)“-’ g(x), where 
g(x) is analytic, the Bernoulli polynomial B,(x) (see (3.1)), and a function g,(x) 
which we construct at the end of Section 3. 

For functions for which f’“‘(l) = f “‘(0) for all s, this lemma tells us merely that 
the ultimate rate of convergence of the Fourier coeffkients is faster than any negative 
integer power of r. A stronger result is 

LEMMA 2.7. When f ‘“‘(1) -f (“(0) = 0 for all s and f (z) is analytic, there exist 
finite K and L so that 

1 C”‘fl < KeCZnL’, I S(‘)f( < Ke-2”L’, (2.7) 
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where L is any number for which f(z) is analytic for all z in the infinite strip 
1 Im z) <L, and K may be taken to be 

K = I ’ If@ + iL)I dx. 
0 

This result can be readily proved by contour integration using 

1 'f(~) e2nirx 

0 
dx=jr+jirtl +ji~+If(x)e2”i”dz, P-8) 

and noting that since f(x) is periodic, the first and third integrals on the right 
eliminate each other. 

The function&(x) in (2.3) illustrates this theorem. For this function 

cry3 = p’, iv)fj = 0, (2.9) 

and f,(z) has a sequence of poles on the lines 1 Im z 1 = (1/2n) In p and no singularity 
nearer to the real axis than these. 

Parenthetically, we remark that the FCAE (2.4) can be derived from (2.8) and that 
though this is more complicated, such a derivation provides information about the 
remainder term which is useful in understanding the misleading behavior described 
below. For details see Lyness [ 1, pp. 90-931. 

In the discussion in Section 1 we emphasized that the efficiency of the trapezoidal 
rule for calculating Fourier coefficients is directly related to the rate of decay of the 
Fourier coefficients. In particular, when an m panel trapezoidal rule is used, the 
accuracy can be assessed by the magnitudes of the coefficients C”‘fand ,!?‘)A where 
r is close to m/2. In the lemmas above we have collected together some information 
about these magnitudes. The brief discussion which follows indicates the 
computational significance of this information. 

If we require six-figure accuracy for the sine FCs of functionfi(x) given by (2.5) 
we require m z 10’. If we only required the cosine FCs of this function to this 
accuracy we require m 0 400. However, whenf(x) is periodic, for example,&(x) with 
p = 0.4, we can obtain six-figure accuracy with m z 40 and twelve-figure accuracy 
with m z 80. Between these extremes lie functions which satisfy Lemma 2.6 for 
moderate values of p. Not unrealistic estimates for examples with p = 8 yield six- 
figure accuracy with m z 40 but twelve-figure accuracy with m z 140. 

Now it is often the case that a user does not know to which class his functionf(x) 
belongs. However, the only information required to determine this is the value of 
derivative differences f’“‘(l) -f’“‘(O) for s = 0, 1, 2,.... These could be estimated 
numerically before the calculation using numerical differentiation based on a handful 
of function values. In the case of the function/,(x), two function evaluationsf(1) = 
ea/(ea - 1) andf(0) = l/(e” - 1) yield the information that it will need lo5 function 
values to obtain six-figure accuracy. In other cases, a marginally more sophisticated 
calculation is necessary. 
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The technique described in Section 4 employs this approach. There, by a process 
resembling subtracting out a singularity, the onus of the calculation is shifted from a 
function likef,(x) to one which satisfies the hypotheses of Lemma 2.6 for a moderate 
value of p. 

At first sight one may feel tempted to use the Fourier coefficient asymptotic 
expansion to calculate Ctr)f by evaluating some of the derivatives of f(x) at x = 0 
and at x = 1 and truncating the expansion. For moderate or large values of r the 
error resulting from inaccurate numerical differentiation is not critical since 
successively higher derivatives f(2s--1)( 1) -f (*‘-‘l(O) appear with successively 
smaller cofactors (27~)~“. However, there is a major objection to the uncritical use 
of this expansion. This is that it usually diverges, and when it converges it may 
converge to the wrong result. To see this we note that when f3(x) is an analytic 
periodic function with period 1, the individual terms in the expansion for C”‘(f) and 
for Ccr)(f+f3) coincide but the remainder terms are different. But even more 
misleading is the circumstance that it may have the property that for moderate r the 
magnitudes of the individual terms decrease at first and then increase. However, trun- 
cating the series at its smallest term may produce a completely erroneous result 

TABLE I” 

Approximations to C”‘f with r = 6 and S(x) = (x’ - x + 0.26) ’ 
Obtained by Truncating the FCAE (2.4a). 

9 T*qb G,’ 

1 -2.081713996537-002 -2.081713996537-002 
2 6.240287755500-004 -2.019311118929-002 
3 -4.405942671461-005 -2.023717061616-002 
4 5.406335388194-006 -2.023176428105SOO2 
5 -9.689934463007-007 -2.023273327446-002 
6 2.189459081506-007 -2.023251432867TOO2 
1 -4.886759442277-008 -2.023256319633-002 
8 -1.259169531957-009 -2.023256445536-002 
9 2.21538269385948 -2.023254230153GOO2 

10 -3.699575480714-008 -2.023257929715-002 
11 5.432548918994-008 -2.023252497194-002 
12 -7.975547956536-008 -2.023260472750-002 
13 1.182895543519-007 -2.02324864378942 
14 -1.688494712958407 -2.023265528125-002 
15 1.911763558659~07 -2.023246411118-002 
16 4.555025903741MIO8 -2.023241856077-002 
17 -1.615341149154~06 -2.023403390252-OC2 
18 9.184600203531-006 -2.022484930232-002 
19 -4.237003493705-005 -2.026721933740-002 
20 1.809352162352-004 -2.00862841209242 

a This table is taken from J. N. Lyness, Math. Cony. 24 (1970), p. 110. 
’ The second column contains the qth term, namely, Tzq = (f (+-l)(l) -f’24-“(0))/(2rr. 6)*“. 
’ The third contains the truncated sum Czq = XT= I Tgq. 
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(wrong both in magnitude and sign). This effect is illustrated in Table I. One might 
well conclude from this table that, when f(x) = l/(x2 - x + 0.26), the value of Cf6’f 
is -2.033 x lo-‘. In fact, it is +7.01 X 10-l. Nevertheless, when r is sufficiently 
large, this series can be used. However, one has to have some prescription for how 
large this value of r must be and the number of terms to retain based on some other 
calculation. It will turn out that the technique described in Section 4 provides such a 
prescription. 

3. BERNOULLI POLYNOMIALS AND THE EULER EXPANSION 

To proceed, it will be convenient to introduce the Bernoulli polynomials and 
functions. The standard definition by means of the generating function is somewhat 
cumbersome for the present purposes. A more straightforward approach is to define 
them by means of their Fourier series. 

The Bernoulli functions B,(x) q = 0, 1, 2,..., are defined by: 

B,(x) = 1, 

&q+ 1(x) 
(2q + l)! = 2(-1) 

q+l m sin 271rx 
c I=, (2m)Zq+ ’ ’ 4 > 0, 

B2p(x)= O” cos 2nrx 

PqY 2wq-’ rz, @.)24 ’ s> 1. 

As a preliminary we identify B,(x), 

B,(x) = x - + = -2 r-, sin2F ) o<x< 1. 

(3.1) 

(3.2) 

This is established simply by calculating the Fourier coefficients of x - f and putting 
these together as a Fourier series. From these definitions it follows that 

4& = B,-,(x) 
dx q! (q - l)! ’ O<x<l, q>l. (3.3 > 

(For q > 1, this follows from (3.1); for q = 1 it follows from (3.2).) Moreover, by 
integrating term by term in (3.1) we find 

I l Ldx= B (x) 
q! 

1, 4 = 0, 
0 

= 0, 4> 1. 
(3.4) 
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From (3.3) we can obtain a recursive definition, i.e., 

B,(x)= 
I 
x 

cl! 
B,-l(O & + K 

0 (q- I>! 9’ (3.5) 

where K,, the constant of integration, is determined by (3.4). 
Now B,(x) coincides with a manic polynomial 

B,(x)=x-+, 

in the interval 0 < x < 1. Since g,Jx)/q! may be obtained by integrating B,(x) (q - 1) 
times, it follows that B&x) coincides with a manic polynomial of degree q in this 
interval. These polynomials are the Bernoulli polynomials denoted by BJx). Finally, 
the Bernoulli numbers B, are simply B,(O). Extensive tables of Bernoulli polynomials 
exist. 

The only properties of the Bernouilli polynomials required subsequently in this 
paper are (3.3) and the result 

B,o-B,o=O, 
q! q! 

q = 0, 2, 3, 4 )...) 

(3.6) 
= 1, 4’ 1, 

which follows from (3.4). 
We now construct the Euler expansion. We take the Fourier series (1.1) and 

substitute for Cr)f and ,@‘)f the Fourier coefficient asymptotic expansion (with 
remainder term) (2.4). When we do this, there appear sums of the form 
C (cos 27rrx/(27~)*~) which may b e expressed in terms of Bernoulli functions (3.1). 
After some elementary manipulation we find 

- - 
P-1 

f(x) = j-f+ qzl (j-‘“-“(1) -f’“-“(O)) 7 +j-)(qt) Bp(x) yJx - [) dt. 

(3.7) 

This is known as the Euler expansion. (Incidentally, if we apply the trapezoidal rule 
operator R1m,ll (given in (1.4)) to this, we uncover the better known Euler-Maclaurin 
expansion.) These expansions share the undesirable convergence properties of the 
Fourier coefficient asymptotic expansion. We may write the Euler expansion in the 
form 

where 

f(x) = h, - l(X) + &G-4~ (3.8) 

P--l 

h,-,(x) = 1 (f’“-“(l) -/“-“(0))y 

q=1 
(3.9) 

is a polynomial of degree (p - 1) in x. 
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We now come to the purpose of constructing the Euler expansion. Using (3.3) and 
(3.6) above we readily show that the derivative differences of h,-,(x) satisfy 

hp!i(l) - h?,(O) =f’“‘(l) -f’“‘(O), q=o, l)...) p-2, 

and it then follows immediately from (3.8) that 

gJp’( 1) - gl”‘(0) = 0, q=o, I)...) p-2. (3.10) 

This result recalls the discussion in Section 2. The function g,(x) satisfies the 
hypotheses of Lemma 2.6 and so has the property that its Fourier coefficients decay 
reasonably rapidly. In accordance with this lemma we have 

C(‘)g, = o(?--pE), S(‘)gp = 0(r-PO), 

where pE and p. are the smallest even and odd integers exceeding p - 1. The function 
g,(x) may be obtained fromf(x) simply by subtracting a known polynomial h,-,(x). 
And it can be obtained from any function f(x), however slowly the Fourier coef- 
ficients off(x) may converge. 

Leaving aside for the moment some minor but nontrivial difficulties, the thrust of 
our approach is this. Take some moderate value of p, say p = 8 or 9. Calculate the 
parameters of the function h,-,(x) in (3.9). Express C”tfin the form 

Ccr)f= C”‘h _ + C”‘g 
P 1 P’ (3.11) 

Use the exact result for C”‘h,-, . And use the trapezoidal rule (the FFT) to evaluate 
the Fourier coefficients of g,(x). And because of (3.10), we are assured this is a 
moderate calculation and is not like the first examplef,(x) of Section 2, an excessive 
one. 

4. APPROXIMATIONS FOR FOURIER COEFFICIENTS 

The proposed method then is based on choosing values of p and of m, setting 
f(x) = h _ 1(x) + g,(x) and using the m-panel trapezoidal rule to approximate C”‘g, 
by a, lm,lfg As mentioned at the end of Section 1, these approximations to C”‘g are, 
in fact, ex&t Fourier coefficients C(‘)GP, where G,(x) is the trigonometric interp\lant 
of joint degree (m/2, (m/2) - 1). S o, in effect, we are approximating Ctr)f by C”‘F, 
where 

F(x) = h,-,(x) + G,(x) (4.1) 
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and G,(x) is the trigonometric interpolant of g,(x); F(x) is an approximation tof(x) 
of the form 

with 

P-l 

F(x)= c AqJfp 
m/2 

+ 2 C” p, cos 271rx + v, sin 2nrx, (4.2) 
q=1 i-=0 

and 

A, =p- I’( 1) -f’“- “(0) (4.3) 

,u, = R’m*‘l(Gp(x) cos 27rrx) SE a~*“gp, r < m/2, 

v tm.11 r = R’“*“(G,(x) sin 2nrx) = b, 
gP’ r < m/2, (4.4) 

&.=v,=o , r > m/2. 

Note that this definition implies 

v. = v,,, = 0. 

We note also that, while A4 depends only on the functionf(x), the values of pL1, and v, 
depend on p, m, and the values of I, as well. 

The Fourier coefficients of F(x) are readily evaluted using the known Fourier coef- 
ficients of the Bernoulli polynomials given in (3.1). In terms of quantities defined in 
(4.3) and (4.4) they are given by 

C’O’F= p,, 
p--1E 

C”‘F = C (-1)q’2+1 Aq/(2nr)q + pu,, 
q=2 

p-1E 

P”‘F= C (-1)q’2+1 I /(2xr)q + +,D,,~, 9 
q=2 

p--1E 

C”‘F = 

,z* (-l) 
q’2 + ’ Aq/(27rr)q, 

p-10 

S”‘F = 
z, (-l) 

(q+ l)” lq/(2ar)q + vr, 

p-10 

S”‘F = z:I (-l)‘q+ ‘)I2 1q/(2nr)q, 

r = 1, 2,..., m - 1 
2 ’ 

r>T-1, 
(4.5) 

r = 1, 2,..., 3 - 
2 

1 
’ 

r>m 
2’ 

where the superscripts E (or 0) attached to the summation symbol indicate that the 
sum is restricted to even (or odd) values of the summation index. 

The reader will note that for r > m/2, the expressions for C”‘F and 58°F coincide 
with the first p/2 terms of the Fourier coefftcient asymptotic expansions off(x) given 
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in (2.4). Thus the method effectively provides a prescription for determining when it 
is “safe” to use this expansion. 

For all r, the approximation error is given by 

C”‘F - pf= (C”‘h,-, + C(‘)Gp) - (C”‘h,-, + C”‘g,) 

= C”‘G, - C(‘)gp, 
(4.6) 

and so depends only on the accuracy of the approximation of gP by its trigonometric 
interpolation polynomial. In Section 1 this accuracy was discussed in some detail. 
The discussion following (1. IO) and the formulas (1.17) and (1.18) are equally valid 
in this context, so long as one replaces f(x) and T(x) by g,(x) and G,(x), respec- 
tively. Consequently, the numerical accuracy of (4.5) when used as approximations 
for Ccr’f and S(“f can be estimated either by spot checks of g,,(x) - G,(x) or by 
noting the magnitude of the final few calculated approximations to the Fourier coef- 
hiem of g,(x), that is, ,umlz, ,qmlz)- I, v(,/~)-, - Denoting this accuracy by E for the 
moment, it is important to note that C”‘F and S”‘F are approximations of this 
accuracy to C(“f and S@)J, respectively, for all values of r, and not just for I < m/2. 
There is no abrupt break in the quality of the approximation at r = m/2. For 
example, when f(x) is a function whose Fourier coefficients decay slowly, one finds 
for small r, that terms like ~1, may be large and even predominate the term involving 
the summation over q. As Y is increased, the magnitude of pr rapidly decays, reaching 
the tolerance E at r = m/2 and is not required for r > m/2. On the other hand, the 
term involving the summation decays slowly with increasing r, is predominant at 
r = m/2 and continues to provide a meaningful approximation to Cr)J for higher 
values of r until r is so large that C”‘F itself is of magnitude only E. 

While the results can be interpreted as adjustments to the FCAE, the interpretation 
along the lines of subtracting out the polynomial h,-,(x) is helpful. This is akin to 
subtracting out the singularity in numerical integration. In fact it is precisely 
equivalent to subtracting out singularities in J’(x). If we denote by hP- 1(x) and g,(x) 
the Fourier series of h,-,(x) and g,(x), respectively, it follows that 

f(x) = hp- I(X) + g,(x>. 

In view of (3.10), g,(x) is a function whose derivatives of order (p - 2) or less are 
continuous for all x, and so the singularities in T(x) have been mitigated by 
subtracting out the known function. 

In practice, numerical differentiation is required to provide approximations & to A, 
in (4.3) and it would be only prudent for a user to seek reassurance that this will not 
introduce gross inaccuracies into the results. A detailed analysis of the effect of inac- 
curate derivatives is given in Lyness [2], where numerical estimates are derived. In 
fact, what happens is that the values of pr and V, depend on the values of lq, One 
finds in a perturbation analysis of formulas like (4.5), that successively higher 
derivatives occur with successively smaller coefficients. Under the assumption that 
five binary digits are lost in each numerical differentiation, the error E which would 
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have been attained using exact derivatives is compromised to the extent of attaining 
an error 3s. 

A moment’s reflection will convince the reader that one could use any subtraction 
function /i(x), set 

f(x) = h”x) - g’(x), (4-g) 

and calculate the Fourier coefficients off(x) using 

py-= c’r’~+ C”‘& (4.9) 

with C”‘h” being calculated exactly and C”‘g being calculated using the trapezoidal 
rule. The particular choice of K(x) as h,-,(x) defined in (3.9) is merely the choice 
which leads to the most rapid calculation for C”‘g. If one cannot evaluate h,- 1(x) 
exactly but uses a function as close to h,-,(x) as is feasible, g’(x) will be close to 
g,(x) and the worst that is likely to happen is that the numerical evaluation of C”‘g’ 
will be marginally more expensive than the corresponding evaluation of C”‘g, would 
have been. 

5. CONCLUDING REMARKS 

The method described in this paper was first described in Lyness [2]. In that long 
paper we dealt at length with mathematical details. For example, the convergence 
properties of the Euler-Maclaurin asymptotic expansion was discussed in detail; the 
theory was presented more generally using offset trapezoidal rules; and a thorough 
analysis of the effect of using numerical derivatives was presented. Subsequently, in a 
technical memorandum (Lyness [4]), we describe generalizations of the method; this 
time we address a reader who may want to program a calculation; the technique is 
generalized to include the case in which function values are available only at 
irregularly spaced abscissas which may or may not lie within the fundamental 
interval; corresponding formulas for approximating sets of trigonometrical integrals 
of the form 

I ‘f(x) eyfl dx, j = 0, l,..., 
A 

where yj may be real or complex are also given. 
In the present paper the author has attempted to present the same method in a way 

in which the underlying ideas stand out and a scientist who is used to calculating 
Fourier coefficients can readily relate these modifications to the familiar theory. 
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